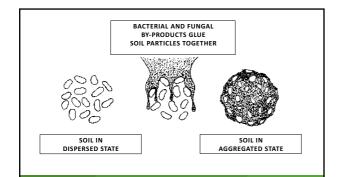
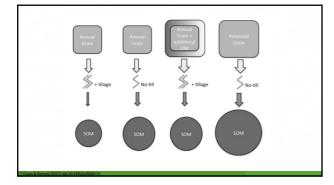

Biological

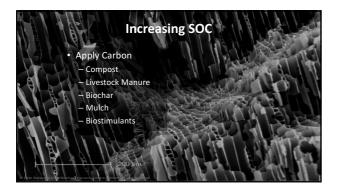


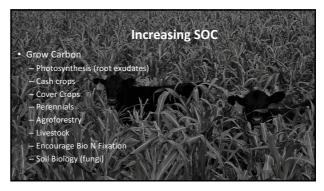
Mycorrhiza and Aggregation

- Soil structure is influenced by many factors!
- A long term study found a highly significant correlation with **AMF abundance** and **soil aggregation**.
- Cultivation breaks apart these precious aggregates.
- They also found fungicide applications reduced AMF and water-stable macroaggregates.

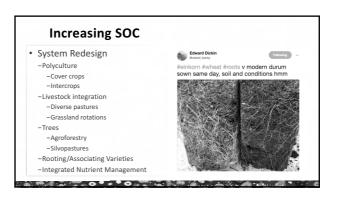

Enhancing AMF - Environment

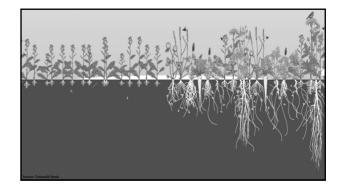
- Soil Cover always maintain host plants and a flow of root exudates (food source) for AMF.
- Avoid fallows or keep them as tight as possible if unavoidable – plant green?
- Intercrop an AMF dependent plant (ge legume) with a non-host (Brassica, Chenopods etc).
- More *plant diversity*.

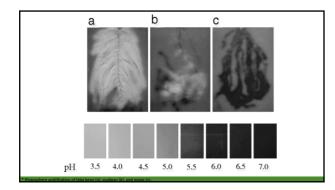



Enhancing AMF - Inoculation

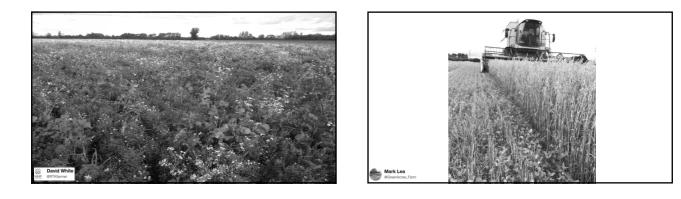
- Direct inoculation onto plants is most effective:
 - Seed treatment
 - Liquid Inject
 - Seedling drench
- Within a rotation, two ideal times to inoculate:
 When rotating *from a non-AMF crop* to an AMFdependent crop.
- At start of a pasture or cover crop rotation if you want to speed up establishment (esp in no-till).
- Don't wait until after establishment!

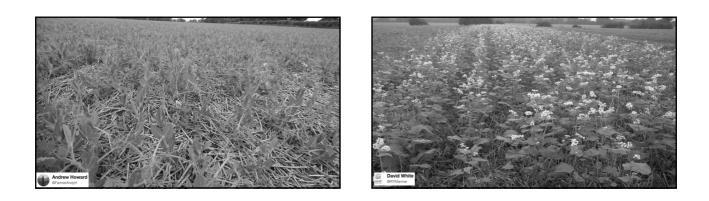


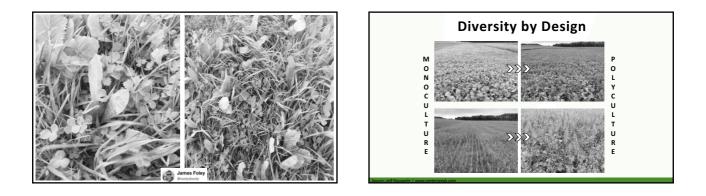




Design with Diversity


- Begin the transition from
- monocultures to polycultures - Intercropping
- Cover crops
- Green Manures
- Diverse pastures and herbal leys
- Agroforestry – Silvopasture
- Field margins for wildlife

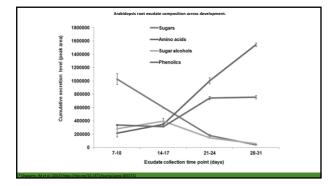


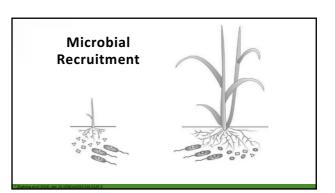


Photosynthesis

$6CO_2 + 6H_2O$ -----> $C_6H_{12}O_6$ (sugar) + $6O_2$

- C₆H₁₂O₆ (sugar) -----> minerals/enzymes
- Complex sugars
 Carbohydrates
 Amino Acids, Proteins
 Fats & Oils
 Hormones
 Vitamins
 Phyto-nutrients
 Protective Compounds


00 Air Minerals Life Energy Water


Partitioning Photosynthates

- Photosynthates are excreted as root exudates:
 - Cereals: 20-30% – Pastures: 30-50%
- Understanding the function and fate of these root exudates is currently a hot spot of scientific , endeavour.

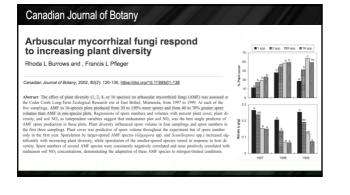
Hundreds of root exudates...

Class of compounds	Single components*				
Carbohydrates	Arabinose, glucose, galactose, fructose, sucrose, pentose, rhamnose, raffinose, ribose, xylose and mannitol				
Amino acids	All 20 proteinogenic amino acids, L-hydroxyproline, homoserine, mugineic acid, aminobutyric acid				
Organic acids	Acetic acid, succinic acid, 1-aspartic acid, malic acid, 1-glutamic acid, salicylic acid, shikimic acid, isochtric aci chorismic acid, sinapic acid, caffeic acid, p-hydroxybenzoic acid, gallic acid, tartaric acid, ferrulic acid, protocatacheuic acid, p-comuncir acid, nugineic acid, oxalic acid, citric acid, piscidic acid				
Flavonols	Naringenin, kaempferol, quercitin, myricetin, naringin, rutin, genistein, strigolactone and their substitutes wit sugars				
Lignins	Catechol, benzoic acid, nicotinic acid, phloroglucinol, cinnamic acid, gallic acid, ferulic acid, syringic acid, sinapoyl aldehyde, chlorogenic acid, coumaric acid, vanillin, sinapyl alcohol, quinic acid, pyroglutamic acid				
Coumarins	Umbelliferone				
Aurones	Benzyl aurones synapates, sinapoyl choline				
Glucosinolates	Cyclobrassinone, desuphoguconapin, desulphoprogoitrin, desulphonapoleiferin, desulphoglucoalyssin				
Anthocyanins	Cvanidin, delphinidin, pelargonidin and their substitutes with sugar molecules				
Indole compounds	Indole-3-acetic acid, brassitin, sinalexin, brassilexin, methyl indole carboxylate, camalexin glucoside				
Fatty acids	Linoleic acid, oleic acid, palmitic acid, stearic acid				
Sterols	Campestrol, sitosterol, stigmasterol				
Allomones	Jugulone, sorgoleone, 5,7,4'-trihydroxy-3', 5'-dimethoxyflavone, DIMBOA, DIBOA				
Proteins and enzymes	PR proteins, lectins, proteases, acid phosphatases, peroxidases, hydrolases, lipase				

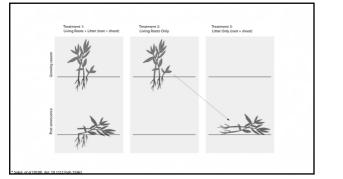
SCIENTIFIC REPORTS

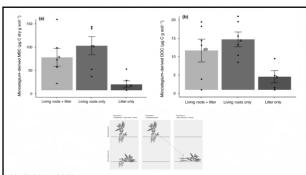
OPEN Root biomass and exudates link plant diversity with soil bacterial and fungal biomass Nice Eisenbuer¹³, Anaud Lancer¹, Tinijs Strecker¹, Stefan Schev¹, Keijs Steinsuer¹³

Accepted: 13 February 2017 Made Published: 06 April 2017


not derived organic inputs are discussed as the main drives of ball communities, experimental exidence is scare. While there is some exidence that higher not balans as they plant drivently increases substrate availability for sol biots, several studies have speculated that the quantity and diversity of not support in the soil, it, choose that higher not baland and drivently effect on soil block. Here we are an increase measurement to study the not editation and more than the balans of a blactaria and those site of the solution of the solution of the solution of the balans and diversity significantly increased baland balansa, not biamas, the amount of not available. Naterial diversity significantly increased baland balansa, not biamas, the amount of not available to the balansa increased significantly with grant diversity induced increases in not biomass and the amount of not counters. The solution of diversity induced balansa in the biomass of the amount of not counters. The solution of the amount of not counters. These results support that plant therein when an one to biomass and the amount of not counters. These results support that plant therein who may not biomass and the amount of not counters. These results support that plant therein who may not biomass and the amount of not counters. These results support that plant therein who may not biomass and the amount of not counters. These results support that plant therein who may not more than the amount of not support the support of the support that plant therein who may not more than the support of the therein the support the support of the support the support of the support that the support the suppor

SCIENTIFIC **REPORTS**


OPEN Root biomass and exudates link plant diversity with soil bacterial and fungal biomass


The investigation of root exudates is challenging, and we had to accept some limitations of our approach. First of all, we were able to identify only a fraction of the compounds detected in the HPLC; nevertheless we used identified plant products only, because organic compounds in the soil will always contain soil microbial products³⁰ that were not in the focus of this study. Thus, the measures of root exudate amount and diversity should be regarded as proxies representing relative differences among experimental treatments rather than absolate measures. Despite those caveats, the present study provides empirical evidence for the significant role of root exudates in linking above- and belowground communities and the diversity of plant communities with the functional composition of soil microbial communities^{12,22} stimulating future work on the mechanisms of rhizosphere interactions^{25,23,33}.

increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil

Evidence for the pri litter, in forming soi	macy of living root inputs, not root or shoot I organic carbon
	bing ^{1,2} , Elena Karlsen-Ayala ¹ and Mark A. Bradford ¹ Biological Science, Control and Content of Products and Contents of Products, 1207 Fith. 2017. https://doi.org/10.1016/j.2017.0011.0011.0011.0011.0011.0011.0011
	Summary
Author for correspondence: Intent IIV, Soliol Tec: + 1203 4559148 Email: nath solicibilityale.edu Beetrievel 3 April 2018 Accepted: 12 June 2018 New Phytologist (2018)	 Soft organic carbon SGO Ta primary formed from plast reguls, but the relative carbon (O combinations from from grow range to its characteristic start regular start are pooly understarted. Recent through using that laving one plants are at a disoportional tracking laving rent v. With impact and the proceeding of the start of the start starting laving rent v. With impact and the proceeding of the start start of the SOC point. With rend the start of the start of the start start of the start start of the start of the start of the start of the start of the start of the start and the start of the start
doi: 10.1111/nph.15361 Key words: carbon cycle, litter inputs, living roots, microbial biomess, natural-abundance ¹⁴ C tracer, rhizadeposition, sal carbon formation. Sel organic matter.	over multiple year. We show that hings not inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, minetal-associated SOC as well as fast-cycling, particulate organics. If un- thermore, we demonstrate that Vinge on largost are more efficiently analytical by the soil microbial community or mode to the mineral-associated SOC pool (dobbed 'the in vivo microbial tamore anthrea/).
	 Overall our infiniting provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may devide SOC poords devide zerated SOC formation rates.

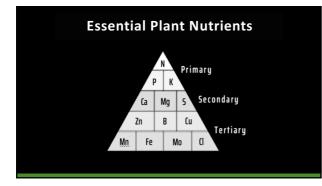
ANNUAL REVIEWS **R**

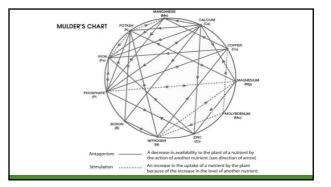
Annual Review of Ecology, Evolution, and Systematics Vol. 48-419-445 (Volume publication date November 2017) First published online as a Review in Advance on September 6, 2017 https://doi.org/10.1146/annurev.ecolosy-112141-054234 indice coolsys 1

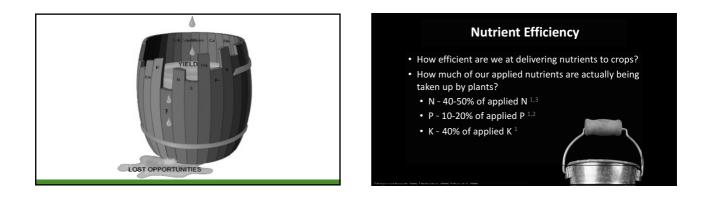
s / Volume 48, 2017 / Jackson, pp 419-445

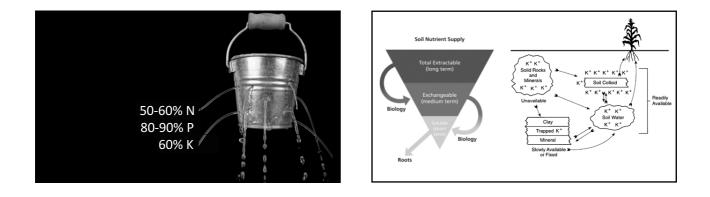
The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls

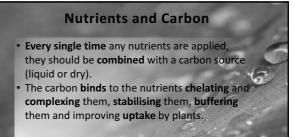
Soil organic matter (SOM) anchors global terrestrial productivity and food and fiber upply. SOM retains water and soil nutrients and stores more global carbon than do plants and the atmosphere combined. SOM is also decomposed by microbics, returning CO ₂ , a prenhouse gas, to the atmosphere. Unfortunately, soil carbon stocks have been widely locations and blotic and Abiotic Controls.		Abstract
production.	The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic	supply. SOM retains water and soil nutrients and stores more global carbon than do plants and the atmosphere combined. SOM is also decomposed by microbes, returning Co ₂ , a greenhouse gas, to the atmosphere. Unfortunately, soil carbon stock have been widely lost or degraded through land use changes and unsustainable forest and a gricultural practices. To understand its structure and function and to maintain and restore SOM, we need a better appreciation of soil organic carbon (SCO) saturation capacity and the retention of above- and belowground inputs in SOM. Our analysis suggests root inputs are approximately for terms more likely than an equivalent mass of aboveground litter to be stabilized as SOM. Microbes, particularly fungi and bacteria, and soil faunal food webs storogly influences SOM decomposition at shallower defty, whereas mineral associations drive stabilization at depths, greater than -30 cm. Global uncertainties in the amounts and factors that constrain soil depths, such as shallow bedrock. In consideration of these functrainties, we estimate global SO Clocks at depths (3 and 3 m to between 2, 27) and 2,770 Bg, respectively, but could be as much as 700 Pg smaller. Sedimentary deposits deeper than 3 m likely contain -S00 pg of additional SDC. Soils hold the largest biogeochemically active terrestrial carbon pool on Earth and are critical for stabilizing atmospheric CO, concentrations. Notentheless, global pressures on soils continue from

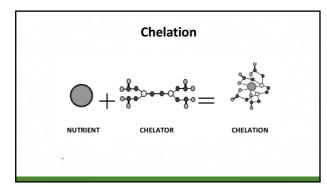

Vegetation type or treatment	Belowground carbon inputs retained in SOM (%)	Aboveground carbon inputs retained in SOM (%)	Ratio	Reference
Conventional agriculture	35%	4.8%	7.4	Kong & Six 2010
Low-input agriculture	65%	4.9%	13.2	Kong & Six 2010
Organic agriculture	91%	3.6%	25.6	Kong & Six 2010
Mixed C3 and C4 crops	36%	4.0%	9.0	Ghafoor et al. 2017
Mixed C3 and C4 fertilized crops	18%	10%	1.8	Ghafoor et al. 2017
Maize	61%	5.0%	12.2	Mazzilli et al. 2015
Soybean	80%	3.0%	26.7	Mazzilli et al. 2015
Rye cover crop, 5 months	26%	5.2%	5.0	Austin et al. 2017
Rye cover crop, 12 months	27%	3.5%	7.7	Austin et al. 2017
Rye cover crop	24%	5.9%	4.1	Austin et al. 2017
Maize	21%	12%	1.7	Bolinder et al. 1999
Maize	38%	11%	3.5	Balesdent & Balabane 1990
Maize	73%	14%	5.1	Clapp et al. 2000
Maize, fertilized	58%	16%	3.6	Clapp et al. 2000
Vetch	49%	13%	3.7	Puget & Drinkwater 2001
Maize	34%	8.0%	4.3	Barber 1979
Mix C3 and C4 crops	39%	17%	2.3	Kätterer et al. 2011
Average, median	46%, 39%	8.3%, 6.6%	8.1, 5.0	

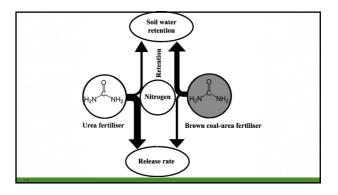

In Summary


- We must integrate all 3 chemistry, physics and biology into our 'soil health' thinking.
- · More plant diversity is good for ecosystem benefit.
- More plant diversity (via root exudates) drives microbial processes and hence SOC sequestration (farm resilience).
- Root exudates are emerging as a critical piece of the puzzle which for the most part are overlooked.
- We need to redesign our production systems so ecological processes support plant production, ecosystem services and farm profitability.

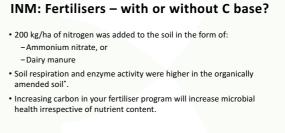








Integrated Nutrient Management

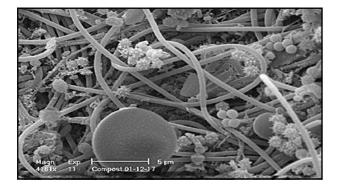

- INM simply *integrates as many tools as possible* to manage fertility to reduce dependency on artificial inputs.
- The INM strategy is broadly about combining organics with inorganics but it also places importance on nutrient recycling via:
 - Crop residues
 - Other biosolids such as manure and compost
 - Increasing biological N fixation (BNF) through leguminous cover crops
 - Using biofertilisers/microbial inoculants
 - Integrating livestock

Carbon Sources

Liquid Carbon

- Molasses - Fulvic acid & Humic acid - Fish Emulsions - Seaweed/Kelp Extracts

-Plant Teas/Extracts


Dry Carbon - Compost - Manures - Raw Humates - Humic & Fulvic granules/powder - Green Manures & Cover Crops

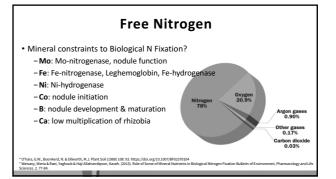
C:N Ratio

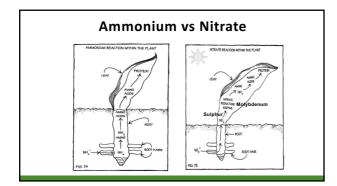
Balance of ingredients is important:

 -carbon-rich woody materials (browns)
 -nitrogen-rich green leafy matter or manures (greens)

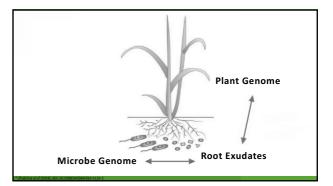
-must be balanced = C:N Ratio.

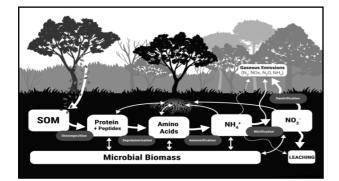
- Browns stubble, straw, dry grass, woodchips/shavings, autumn leaves, newspaper, tre prunings.
- Greens manures, chicken litter, fresh grass, green leaves, vegetable waste, blood and bone, legume hay.

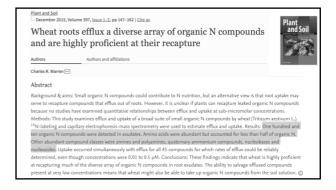


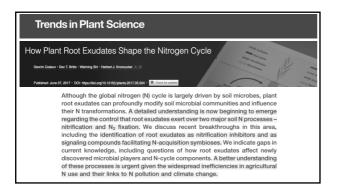

Unfinished Compost?

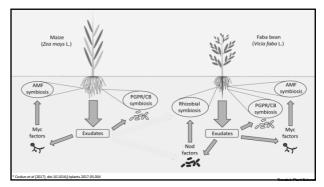
 Unfinished compost will scavenge nutrients from the soil (esp N) to finish its decomposition before it releases anything back to the soil.

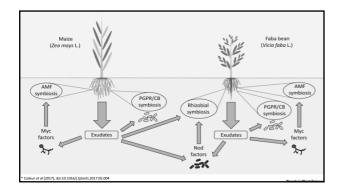


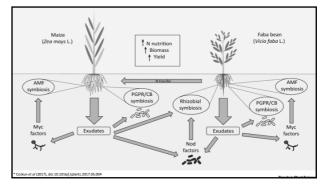


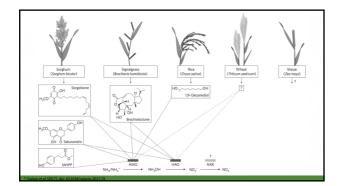


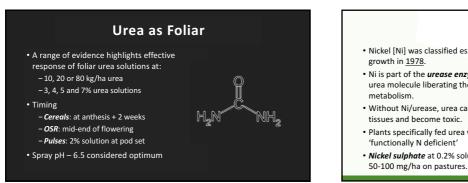


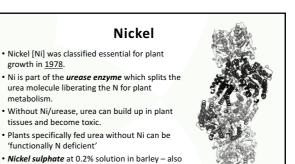


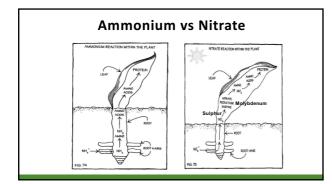


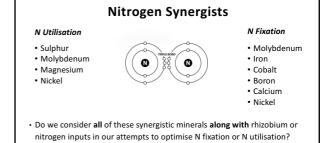








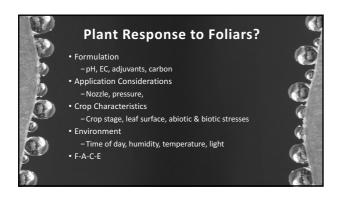



Urea as Foliar

- Soil applied urea is lost via volatilisation or converted into leachable nitrates.
- Plants contain a specific absorption channel for the urea molecule.
- Urea is *readily absorbed via foliar* tissues urea > ammonium > nitrate.
- Foliar applied urea improves NUE via rapid absorption and efficient utilisation/conversion into amino acids/proteins.

Rhizosphere link to Foliars...

- Foliar applying nutrients is actually all about indirect microbial stimulation.
- When calculated back, the amount of nutrient applied via foliar applications is very small.
- Effective foliar applied nutrients prime photosynthesis. • Products of photosynthesis are exuded to feed soil microbes.
- Soil microbes in return, solubilise much more nutrient from the soil and feed the plant.


Photosynthesis

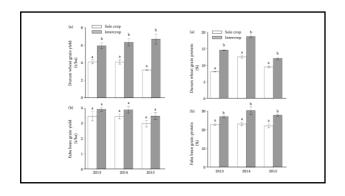
-----> C₆H₁₂O₆ (sugar) + 6O₂ 6CO2 + 6H2O ----

- Complex sugars
 Carbohydrates
 Amino Acids, Proteins
 Fats & Oils
 Hormones
 Vitamins
 Blate subtribute
- C₆H₁₂O₆ (sugar) -----> minerals/enzymes

 - Phyto-nutrients
 Protective Compounds

Plant Soil Environ.

Vol. 64, 2018, No. 3: 138-146

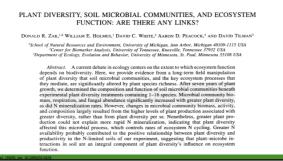

The effect of intercropping on the efficiency of faba bean – rhizobial symbiosis and durum wheat soil-nitrogen acquisition in a Mediterranean agroecosystem

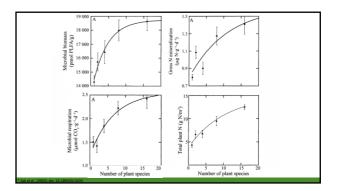
GHLES KACI¹⁴, DIDIER BLAVET³, SAMIA BENLAHRECH¹, ERNEST KOUAKOUA², PETRA COUDERC⁰, PHILIPPE DELEPORTE¹, DOMINIQUE DESCLAUX⁶, MOURAD LATATI¹, MARC PANSU⁹, JEAN-JACQUES DREVON⁶, SIDI MOHAMED OUNANE¹

Kaci G, Havet D, Benlahrech S, Kouakoua E, Couderc P, Deleparte P, Desdaux D, Latati M, Pansu M, Dreven J-J, Ounae SM. (2018): The effect of intercropping on the efficiency of faba bean – rhitobial symbosis and durum wheat soil-nitrogen acquisition in a Mediterranean agroecosystem. Plant Soil Environ, 64: 138–146.

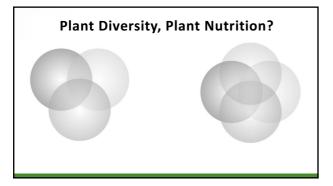
as to compare the rhizobial symbiosis and carbon (C) and ni ning servers sola contains in hiemial rotation of a coreal -

using segment — more obtain (resistance), joints a store-year per-bit operationation within the Medianal symbols of EURS (so the best discrecy in the use of minobals symbols of EURS) for the lega intercooped than for the sole corpped wheat whereas there wrepped intercooped than for the sole corpped wheat whereas there wrepped intercooped than for the sole corpped wheat whereas there wrepped intercooped than for the sole corpped wheat whereas there wrepped into the corporation with a weeted allow, there was significant to by comparison with a weeted allow, there was a significant to be corporation with a weeted allow, the sole cooping within the bisme





Ecology, 84(8), 2003, pp. 2042-2050 © 2003 by the Ecological Society of Americ


In Summary – Part 2

- Bring all the pieces of the puzzle together in an integrated strategy for nitrogen management.
 - Complete plant nutrition and nutrient synergists.
 - INM (combine with carbon).
 - Composting manures to stabilise N and improve bio quality.
 - Consider nutrition for rhizobia and free living N fixers.
 - Foliar applied nutrients (esp urea) for increased NUE.
 - More plant diversity pastures and intercrops.
 - More diverse root exudates for overall soil health and cycling of
 - soil mineral reserves.
- · Integrate all relevant strategies into your systems approach

In Summary – Part 1

 We must integrate all 3 – chemistry, physics and biology into our 'soil health' thinking and go beyond this with plants.

- More plant diversity is good for ecosystem benefit.
- More plant diversity (via root exudates) drives microbial processes and hence SOC sequestration (farm resilience).
- Root exudates are emerging as a critical piece of the puzzle which for the most part are overlooked.
- We need to redesign our production systems so ecological processes support plant production, ecosystem services and farm profitability.

